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Solution methods for compact finite-difference schemes are applied to the vorticity-velocity 
form of the two-dimensional unsteady Navier-Stokes equations. Numerical experiments for 
stagnation point and driven cavity flows are described. 

1. INTRODUCTION 

The flow of an incompressible viscous fluid in two dimensions is described in terms 
of the velocity u = (u, v) and vorticity [ by the Navier-Stokes equations in the form 

u, + v, = 0, 0, - u, = cc. (l.la) 

cl + div(u[ - v grad C) = 0, (l.lb) 

where v is the kinematic viscosity. A direct finite-difference approach to the 
numerical solution of this system of equations serves to highlight inaccuracies which 
can arise from the treatment of boundary conditions when the normal and tangential 
components of the velocity are specified, particularly when a stream function is used 
to satisfy the continuity equation. Inaccuracies can also arise by the use of centered- 
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difference expressions to treat transport terms when the local cell Reynolds number is 
large. The steady state solution of the driven cavity problem has provided a standard 
means of studying these numerical difficulties (cf. [2, 7, 9, 111). 

This paper contains the results of adapting a class of compact finite-difference 
schemes described by Rose [8] and Philips and Rose [6] to treat (1.1) directly in 
terms of the velocity u and the vorticity [. These schemes are second-order accurate 
in terms of the mesh parameters, the accuracy being independent of the local cell 
Reynolds number. Briefly described, the solution method is as follows: with an 
assumed distribution of vorticity, the velocity field is first determined so as to satisfy 
(l.la) with prescribed values of the velocity normal to the boundary. A new 
distribution of vorticity is then determined by solving (1. lb) using boundary 
conditions for the vorticity which are implied by values of the tangential components 
of the velocity prescribed on the boundary. A repetition of the process then yields the 
velocity and vorticity at any later time. It appears that the only previous use of 
vorticity-velocity variables in numerical calculations is that of Fasel 14 ]. At each 
time step Fasel solves two Poisson equations for the components of u, derivable from 
the definition of vorticity. 

Two numerical experiments are described. One treats the flow impinging on a flat 
plate, in which case we are able to compare the numerical results with the analytical 
steady state solution [ 1 ]. The other treats the driven cavity problem. our primary 
purpose being to describe the time evolution of this classical problem [ 3 ]. 

Section II describes the compact finite-difference equations whose solution yields 
an approximation to (1.1); the numerical schemes which provide the solution of these 
equations are discussed in Section III. The remaining sections report the results of 
applying these developments to the problems mentioned above. 

II. COMPACT DIFFERENCE SCHEMES FOR u AND ( 

Consider the problem of approximating the solution of (1.1) in a rectangular 
domain D on whose boundary r both components of the velocity are prescribed. 
Subdivide the domain into rectangular computational cells rc$( 1.x - x.j < AX/~, 
1 y - y,] < Ay/2, It - t,,l < At/2} and write wJ’~ = w(jAx, k Ay, n At). A typical cell 
and the location of the variables on that cell are shown in Fig. 1. A variable 
associated with the side of a cell is to be interpreted as the average of that variable 
over the side of the cell and one associated with the center of a cell is an average over 
the cell. We employ the notation 

px w:,k = cwi”+ 1/2.k + w:- 1,2,k)/2, 6x w;,k = (wj”+ II2.k - w;- ,,2,k)/AX,“” 

When no confusion is likely to arise we suppress the spatial indices and write 
WY= w(., .,ndt); thus ,u,w:, 6,w’l, ,u,,w!, 6,wl, pu,wY, 6,~: involve values 
associated with the faces of the cell rc!‘. A finite-difference scheme which involves 
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c;-B,j; c;-B,j; Q;-$,j y?yi$-12i*,j; &, 

-l,j-$; ‘y,j-g; ~:,j-ii 
“: 

FIG. 1. Values associated with the sides of a computational cell. 

only data associated with velocity equations (1. la) and vorticity convectivediffusion 
equation (1.1 b) are: 

A. Velocity Equations 

Suppose values c” I’* are prescribed. Following [ 81, the velocity components at 
time t = t, are determined by the solution of the compact difference equations 

6,u” + 6,vl= 0, (2. la) 

cu, - Pu,) v” = 0, (2.lb) 

when, say, the components of the velocity normal to the boundary are prescribed. 

B. Vorticity Equations 

Write (1. lb) in system form as 

and suppose that the velocity field u? has been determined at time t = t,, , Following 
[ 61, a compact difference scheme for (2.2) is given by 

(6, + @,u?) 6, + f&J?) 6,) C? = v(d,$v + s,w’l>, (2.3a) 

Pu,C” =i&i” =PJl, (2.3b) 

6x1: = Cu, - i Ax q(B,) 6,) 4”, (2.3~) 

&1” = Cu, - 4 AY q($J d,J w” , (2.3d) 

in which 

and 

0, = u Ax/2v, e,, = V Ay/2v, (2.4) 

q(e) = c0th e - ep I. (2.5) 
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As described below, the solution of (2.3) yields [l “I2 in terms of [ye- “’ and 
boundary conditions for [‘!. We shall employ the approximations 

4(@ = e/3, for 0 small, 

=sgn8-&‘, for 0 large, 
(2.6) 

where sgn 0 = B/] 01. 
In order to understand the role of the function q(d) in (2.3) consider the differential 

equation 24, + au, - vu,, = 0, where a = const. This equation has exponential 
solutions of the form 4(x, t; a) = exp(ax -/3(a) t), where /3(a) = a(a - va). For a = 0 
or a = a/v, /I = 0 and a steady-state solution results. Consider the family of solutions 

where c,, c2, c, are parameters, viz., u = c, + c2(x - at) + cj exp(ax/v). The 
difference operator 

-V6, 

4% - 45 6,) ’ 

where <= AX/~, results in a truncation error (s,(a), sz(a))’ #(x3 t; 0) given by 

where, if r = Ar/2, 

E,(a) = -5-I sinh /3(a) r + (a - va) 5~. ’ sinh a& 

c,(a) = ({-’ + qa) sinh a< - a cash at. 

Hence &r(O) = ~~(0) = 0 and also &,/8a InzO = as,/& Ia -0 = 0 so that the truncation 
error arising from the basis Q(x, t; 0), 4,(x, t; 0) vanishes. For a = a/v the truncation 
error is, since P(u/v) = 0, 

& ,(alv) = 0, sZ(u/v) = a sinh ar((at)-’ + q - coth at) ja zmoir. 

so that E~(u/v) = 0 when q(&/v) is given by (2.5). Thus the parameter q(0) serves to 
reduce the truncation error of the difference scheme to zero on the linear solution 
space spanned by 4(x, f; 0), 4,(x, t; 0) and 4(x, t; u/v) independently of the value of 
the local cell Reynolds parameter 0 = a Ax/2v. 

As discussed in 161, (2.3) can be expected to provide a convergent approximation 
to (2.2) for any fixed values of I, = At/Ax and 1, = AflAy when At -+ 0 which is 
second-order accurate independent of the values of the cell Reynolds numbers ]0,] 
and /S,,]. 
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III. NUMERICAL SOLUTION OF THE VELOCITY AND 
VORTICITY DIFFERENCE EQUATIONS 

Because of their compact form, velocity and vorticity difference equations (2.1) 
and (2.3) present novel challenges for their numerical solution. While the approaches 
to be described in this section appear to offer effective solution procedures, they lack 
an efficiency which would be desirable for extended applications. We hope to report 
on progress toward the goal of developing more efficient techniques in a later paper. 

A. Velocity Equations 

We are indebted to Brandt and Nicolaides for bringing to our attention an iteration 
scheme due to Kaczmarz [S] which provides an effective means for treating the 
velocity equations (2.1). 

Kaczmarz’s scheme is most simply described for the general system of algebraic 
equations Ax = b in which A is n x n (Tanabe [lo] has discussed the extension to 
general m x n systems). Let Ai denote the jth row of A and let R(x) = Ax - b; if rj(x) 
denotes the jth component of R(x) and if xck’ indicates the approximation to x at the 
kth iteration, then the scheme is described by 

,ytk+ ” = xck’ + wAf(AjAf)- ’ . rj(xck’), j = 1) 2 )...) n, k =j (mod n). (3.1) 

Here w is an extrapolation parameter. Since the scheme is a projection method, (3.1) 
describes an SOR-type iterative technique. 

In a personal communication, Nicolaides has shown that (3.1) may be applied 
when it is partitioned so that Aj is I X n. Let 

u = (u, Il)T, 4= (0, LIT, and C=(:, i): 

also, define residuals R ,(U!“‘), RZ(UIk’) by 

R ,(U!“‘) = 6, Ulk’ + C 6, Ulk’ - [rk’, R *( UT”‘) = ,uu, Ulk’ - ,uv Ulk’. (3.2) 

Then iteration scheme (3.1) applied to velocity equations (2.1) for the values of I/ 
associated with the sides of a computational cell leads to 

UIk+ ” = Ulk’ + &T(B . BT)-’ 

where 

B _ /?I, -AI, c -c 

c 1 I, I, -I, - I ’ 

(3.3) 

(3.4) 

in which I is the 2 x 2 identity matrix and 1 = dy/dx. In numerical experiments 
reported below, experimentally determined values of w were employed. 
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At cells which are incident to the boundary of the fundamental computational 
domain, certain components of U will be specified by boundary conditions. This will 
require a slight modification of the matrix B, the details of which will not be 
described here. 

B. Vorticity Boundary Conditions 

In the applications considered in this paper, iteration scheme (3.3) was used to 
solve velocity equations (2.1) when the normal component of the velocity field was 
prescribed on the boundary r of the computational domain. The result yields a 
velocity field U” at time t = t, .which, generally, violates the additional boundary 
condition for the tangential component of the velocity also specified on r. The 
vorticity [” resulting from this computed velocity field may be calculated from the 
definition [” = 0: - u,” using second-order accurate approximations to the derivatives 
u;, v!j based upon calculated values of the velocity field interior to the computational 
domain. One may also calculate the vorticity p which would result were the 
prescribed tangential velocity employed instead. The difference m - [” will approx- 
imately represent the increment of vorticity needed to satisfy the additional tangential 
velocity condition arising from velocity equations (2.1). The vorticity i” will provide 
the boundary values required for the solution of (2.3) in a manner now to be 
described. 

Figure 2 illustrates the situation at a point P, at the right-hand boundary in which 
p P-., -1, are the immediate interior neighbors of P, which lie along the extended 
interior normal to the boundary I-. 

If, at P,, the normal component u of the velocity has been prescribed, say u = zi, 
then tiY will also determine U, at P,. The vorticity associated with the solution of 
velocity equations (2.1) which results from prescribing this normal boundary 
condition at P, is 

<“(PO) = (3v”(P,) - 4v”(P- ,) + v”(Pp,))/2 Ax - IT,(P,), (3.5) 

which expresses the condition [ = v, - U, at P,. The vorticity p(P,,) which results by 
imposing instead the prescribed tangential velocity, say v(PO) = V(P,,), is then 

r”(P,) = (36(P,) - 4v”(Pp J + v”(P-,))/2 Ax - u,(P”). 

FIG. 2. Interior neighbors of a boundary point. 
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Similar expressions enable vorticity values p to be calculated on the entire 
boundary r of the computational domain and will serve to provide boundary 
conditions required for the solution of vorticity equations (2.3) as next described. 

C. Vorticity Equations 

With a velocity field u” determined as in III(A) and vorticity boundary data c 
determined as in III(B) the vorticity p+ “*at t = t,+ ,,,* may be determined by a 
solution algorithm described by Philips and Rose 161. Briefly stated, the procedure is 
as follows: with r = At/2 let 

(3.6) 

By eliminating the values r+“* occurring in (2.3a) and (2.3b) the result is 

P-$)+rQ, (;)= (11;“*), P~(::l)+iQI(~Zj=(i:Oi2i. (3,7) 

A two step procedure to determine cn+“* is 

Step 1. Solve (3.7) for (m, 41, WY) using the AD1 approximation 

=P,‘(Z--Q,P,?) (i.0”‘) (; ) =P;‘(I--Q,P;I) (‘:,“*j, (3.8) 

in which the solution operators P; ’ and Pi ’ may be constructed by an algebraic 
method described in (61 using boundary values for the vorticity r;” developed in 
III(B). The accuracy of the approximation of (3.8) to (3.7) is O(t’). 

Step 2. With the solution of (3.7) determined by Step 1, [Y+“* may be obtained 
using either leapfrog equation (2.3a) or, more simply, Eq. (2.3b). 

The solution operator Pi ’ or P; ’ arising in (3.8) may be determined more directly 
as follows: consider 

PI (;;)= (“d’ j. (3.9) 
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Recalling definition (2.5), write ti” = (u, u!), q, = q(B,), A, = At/Ax, K, = 2v At/Ax*. 
As shown in [6] the solution [‘! of (3.9) is determined as the solution of the 
tridiagonal system 

tw -Ml + 4u - K,l rknt1 +~l(l+qx)(l--~u^‘f)--*Ii~., 
+[1+~~nq,+~,lr~=(1-s,>g~+,,2+(1+q,)g~~,,2 (3.10) 

for k = 0, l,..., M - 1, where &, and [,,, are given by the boundary data determined by 
4 as described in III(B). The solution of (3.10) then determines 4” as 

- (1 +qx)gj:+,,*~ 

+ (1 -qxM+1,*. (3.11) 

An analogous solution procedure for P;’ yields (C’, I$!). Thus, ADI scheme (3.8) 
can be implemented by repeated solution of equations of the type described by (3.10) 
and (3.11). 

As is eveident from (2.6), when 0, is large, then q, = sgn 0,. In that case (3.10) is 
approximately a bidiagonal difference equation so that one of the two prescribed 
boundary conditions has little influence upon the solution, i.e., the difference scheme 
automatically incorporates a downwind or upwind differencing bias. 

Finally, as indicated above, although difference scheme (2.3) is unconditionally 
stable, it is only second-order accurate; the approximation (3.8) was chosen to yield a 
similar accuracy. This, together with the SOR type of convergence resulting from the 
use of the Kaczmarz iteration scheme described in III(A), indicates a need to explore 
more efficient solution procedures for compact difference schemes of the type 
considered here for steady state problems. 

IV. STAGNATION POINT FLOW 

A useful problem for testing the method concerns a steady flow impinging on a 
solid boundary. In the following, the x axis coincides with the boundary, the y axis is 
normal to the boundary, and the origin is a stagnation point of the flow. An exact 
steady-state solution of (1.1) is given as follows (cf. [ 11): 

If U,, and 1 are the velocity and length scales of this flow, the stream function is 

v = wlwa u-(r), (4.1) 

where r = x/l, q = 6 (y/l), Re is the Reynolds number Re = U,Z/v, andf(r) is the 
solution of 

f”’ +ff” - (f’)* + 1 = 0, f(O) =f’(O) = 0, f’(a) = 1. 
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The velocity components and the vorticity are then 

u = ~&f’(v), u = -WolJRe)f(vh [ = -(U, a/f) (j-“(v). (4.2) 

If ,u is the dynamic viscosity, the shear stress at the wall is then given by 

50 = PUy Iv = 0 = -P&G 0). (4.3) 

The test problem is formulated as follows: the computational domain is 

the choice of 1 being ‘a matter of convenience. Formulae (4.2) for u and v, when 
averaged over the side of a computational cell, yield values employed for the normal 
and tangential velocity boundary conditions. 

This problem is intended to test the accuracy of the numerical method indepen- 
dently of any errors introduced by approximate numerical boundary conditions, 
particularly outflow boundary conditions. For this reason, we used (4.2) to determine 
the exact normal velocity component and used this as the boundary condition for the 
velocity calculation. We hope to report the results of experiments with other 
boundary conditions in a subsequent paper. 

Starting with initial data for U, U, and [ in the interior, difference equations (1.1) 
were solved by the method described in Section III. A steady state was assumed to 
result when L, norms for the energy, vorticity, and enstrophy (squared vorticity) were 
constant in time within 0.01 percent. The reported errors Au, Au, and A[ in the values 
U. v, and [ represent the difference between the computed values of U, v, and < as 
obtained from (2.1) and (2.3) and values obtained by the exact formulae (4.2) when 
averaged over sides of a computational cell. We have used two L, error norms to 
estimate the accuracy of our results: llAu[l is the L, norm of Au summed over the 
entire computational domain and normalized by the maximum value of 1 u/ in the 
domain, while IlACll, is the L, norm of [ on the solid wall boundary y = 0, also 
normalized by the maximum value of Ic!~. In view of (4.3), ilACilB is also a measure of 
the error of the wall shear stress. 

Table I contains the results of tests in which the number of cells in the 
computational domain was increased from 8 x 8 to 64 x 64 when Re = 100. The Lz 
norm l/dull is tabulated as a function of the number of cells as are the successive 
ratios of these values as the mesh ratio is doubled. The results given in Table I 
confirm the second-order accuracy of the scheme. 

A second series of experiments was conducted to study the effect of increasing the 
Reynolds number when other parameters were held fixed. Defining the boundary 
layer thickness 6 as the distance from the boundary at which the ratio of the velocity 
to its free stream value is 0.99 it can be shown that, for this flow, 

6 = 2.381f\/Re. 

For a fixed mesh the result of increasing the Reynolds number is, then, to decrease 
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TABLE I 

L, Error Norms for Stagnation Point Flow When 
Re = 100 as a Function of the Number of Cells in 

the Computational Domain 

Number of cells IIAUII Ratio 

8x8 3.00 x 10 1 
16 x 16 8.72 x 10 ’ 3.44 
32 x 32 2.40 x 10 a 3.63 
64 x 64 6.16 x 10~ i 3.90 

Nofe. The ratio is that of the error norm for the 
next coarsest mesh to that of the error norm on the 
mesh. 

the number of computational cells lying within the boundary layer. The results are 
presented in Figs. 3 and 4, where lldull and lid& are plotted in terms of the 
Reynolds number; the horizontal scale (6/dy) is the number of cells within the 
boundary layer. An examination of these results shows that if Re < lo”, in which 
case five or more cells lie within the boundary layer, then 11 dull < 0.1% and 
iId& < l%, while if at least 2 cells lie within the boundary layer, then IlAull < 1% 
and llA(ljl, < 10%. Thus, engineering accuracy can be expected when, say, two or 
more cells lie within the boundary layer. 

For Re + oo, the problem under discussion results in a well-known potential flow. 
The inability of our scheme to capture this asymptotic result when the mesh is held 

FIG. 3. Velocity error norm versus number of cells in boundary layer (~/AL’). 
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Re 

FIG. 4. Vorticity error norm versus number of cells in boundary layer (h/A!,), 

fixed and Re -+ CC is shown in Figs. 3 and 4. This is primarily due to inaccuracies 
resulting from the use of (3.5) to estimate the vorticity generated at the boundaries. 

V. THE DRIVEN CAVITY 

As noted in the Introduction, the steady-state driven cavity has been studied exten- 
sively in terms of a stream function (among references we mention [ 2, 9 1). This 
section describes features of the time-dependent solution (II, [) obtained by solving 
(2.1) and (2.3) (cf. 131). 

The time evolution of the velocity and vorticity of an incompressible fluid initially 
at rest in a square cavity whose top wall of length 1 moves impulsively to the right 
with velocity CJ, are shown in Figs. 5 and 6. The results for the Reynolds number 
Re = IU,/v are shown for Re = 400. The computation employed 32 X 32 square cells 
and the value At = 0.03125 was used in (2.3). 

As shown in Figs. 5a-d, the boundary layer at the moving wall is fully developed 
by the time t = 1 and is followed by a vortex which gradually moves toward the 
center of the cavity; a recirculation region is developed when an approximate steady 
state is reached at time t = 22. The main features of this development are also 
illustrated by the vorticity contours shown in Figs. 6ad, in which the dashed lines 
represent negative vorticity and the solid lines represent positive vorticity. 

In Fig. 7 we show certain integral properties of the time evolution in terms of the 
square of the L, norm estimates for the vorticity, enstrophy, and kinetic energy. After 
the initial formation of the boundary layer at the moving wall (t = 1) little change in 
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b 

FIG. 5. Evolution of velocity field to steady state in a square cavity (Re = 400) 
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d t -22.0 

FIGURE 5 (continued) 
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t-1.0 
a 

FIG. 6. Evolution of vorticity contours in a square cavity (Re = 400). 
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118.0 
c 

d 

FIGURE 6 (continued) 
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6 
0 Energy ( x 10’) 
0 Vorticity 

/ 

Fie = 400 
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A Enstrophy (X 10-l) 
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0 2 4 6 8 10 12 14 16 16 20 22 

FIG. 7. Evolution of integral flow properties for a square cavity. 

the vorticity or enstrophy norms occurs. In contrast, the kinetic energy gradually 
approaches an asymptotic steady-state value (t = 22). 

Physical arguments indicate that the time required to reach a steady state is 
proportional to the Reynolds number. For Re = 40 an experiment verified that the 
steady state was reached at time t = 2.2, i.e., a factor of 10 smaller than the time 
t = 22 associated with Re = 400. This observation also highlights the cost of 
accurately following the evolution of a cavity flow for large values of Re; the spin-up 
of the central vortex in a cavity is an inherently slow dynamical process at high Re. 

Similar features of the flow associated with a cavity of twice the length are 
illustrated for Re = 400 in Figs. 8 and 9. At steady state (t = 16) two vortices of 
opposite sign are evident, the stronger being downstream of the weaker. 

Schreiber and Keller [9] have recently carried out very extensive calculations of 
the steady-state flow in a driven cavity, using up to 180 x 180 cells. In Fig. 10 we 
show some comparisons of our final steady state results with their work at 
Re = 1000. We show in Fig. lOa, the variation of the x component of velocity u with 
y, the distance from the bottom of the cavity at various x positions. The solid lines 
are the results of Schreiber and Keller obtained with a 140 X 140 grid and the 
symbols are our results with a 32 x 32 grid. In Fig. lob we show the corresponding 
results for the variation of the y component of velocity, u, with X. Our results are in 
fairly good agreement with those of Schreiber and Keller. 
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t=16.0 

FIGURE 8 (continued) 
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b t-5.0 

FIG. 9. Evolution of vorticity contours in a rectangular cavity (Re = 400). 
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t=10.0 
c 

rl 
tz16.0 

FIGURE 9 (continued) 
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A 

1.0 I I I I I I I I I 

.9-&LAhL. - - .-, 

,2 

,l 

I I I I I I I I . 

o;,, , , , , , , , / 

0 ,I .2 ,3 .4 .5 ,6 .7 ,a ,9 1.0 

DISTANCE FROfl LEFT SIDE OF CAVITY 

FIG. 10. Comparison of the results of this study with those of Schreiber and Keller. In both of these 
figures, the solid lines are the results of the calculations of Schreiber and Keller using a mesh 140 x 140 
cells, while the symbols are the results of our calculations using 32 x 32 cells. 



22 GATSKI,GROSCH,AND ROSE 

CONCLUSIONS 

Compact difference schemes (2.1) and (2.3) provide a second-order accurate 
method for solving (1.1) in terms of the velocity and vorticity variables. Numerical 
experiments with a stagnation flow indicate that the bounary layer may be resolved 
with as few as two computational cells in order to provide useful engineering 
accuracy (10%). 

The SOR type of iteration scheme employed here to solve velocity equations (2.1) 
as well as the At limitation arising from the AD1 algorithm, however, are too inef- 
ficient to provide the basis for a generally useful method to obtain steady state 
solutions. A more efficient approach is now under study and will be reported on in 
another paper. This development should also permit the direct treatment of steady- 
state problems related to (1.1). 
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